题目内容
【题目】若关于x的三个方程x2+4mx+4m2+2m+3=0,x2+(2m+1)x+m2=0,(m﹣1)x2+2mx+m﹣1=0中至少有一个方程有实根,则m的取值范围是_____.
【答案】m≤﹣或m≥﹣.
【解析】解:设关于x的三个方程都没有实根.
对于方程x2+4mx+4m2+2m+3=0,则有△1<0,即△1=16m2﹣4(4m2+2m+3)<0,解得:m>﹣;
对于方程x2+(2m+1)x+m2=0,则有△2<0,即△2=(2m+1)2﹣4m2=4m+1<0,解得:m<﹣;
对于方程(m﹣1)x2+2mx+m﹣1=0,当m=1时,方程变为2x=0,方程有解,所以m≠1,则有△3<0,即△3=4m2﹣4(m﹣1)2=8m+4<0,解得:m<.
综合所得:当﹣<m<﹣,且m≠1时,关于x的三个方程都没有实根.
所以若关于x的三个方程x2+4mx+4m2+2m+3=0,x2+(2m+1)x+m2=0,(m﹣1)x2+2mx+m﹣1=0中至少有一个方程有实根,则m的取值范围是 m≤﹣或m≥﹣.
故答案为:m≤﹣或m≥﹣.
练习册系列答案
相关题目
【题目】某风景区计划在绿化区域种植银杏树,现甲、乙两家有相同的银杏树苗可供选择,其具体销售方案如下:
甲 | 乙 | ||
购树苗数量 | 销售单价 | 购树苗数量 | 销售单价 |
不超过500棵时 | 800元/棵 | 不超过1000棵时 | 800元/棵 |
超过500棵的部分 | 700元/棵 | 超过1000棵的部分 | 600元/棵 |
设购买银杏树苗x棵,到两家购买所需费用分别为y甲元、y乙元
(1)该风景区需要购买800棵银杏树苗,若都在甲家购买所要费用为 元,若都在乙家购买所需费用为 元;
(2)当x>1000时,分别求出y甲、y乙与x之间的函数关系式;
(3)如果你是该风景区的负责人,购买树苗时有什么方案,为什么?