题目内容
【题目】如图1,在中,为锐角,点为射线上一点,联结,以为一边且在的右侧作正方形.
(1)如果,,
①当点在线段上时(与点不重合),如图2,线段所在直线的位置关系为 ,线段的数量关系为 ;
②当点在线段的延长线上时,如图3,①中的结论是否仍然成立,并说明理由;
(2)如果,是锐角,点在线段上,当满足什么条件时,(点不重合),并说明理由.
【答案】(1)①垂直,相等;②见解析;(2)见解析.
【解析】
(1)①根据正方形的性质得到∠BAC=∠DAF=90°,推出△DAB≌△FAC,根据全等三角形的性质即可得到结论;②由正方形ADEF的性质可推出△DAB≌△FAC,根据全等三角形的性质得到CF=BD,∠ACF=∠ABD,根据余角的性质即可得到结论;
(2)过点A作AG⊥AC交CB或CB的延长线于点G,于是得到∠GAC=90°,可推出∠ACB=∠AGC,证得AC=AG,根据(1)的结论于是得到结果.
(1)①正方形ADEF中,AD=AF.
∵∠BAC=∠DAF=90°,
∴∠BAD=∠CAF.
在△DAB与△FAC中,
,
∴△DAB≌△FAC,
∴CF=BD,∠B=∠ACF,
∴∠ACB+∠ACF=90°,即CF⊥BD.
故答案为垂直、相等;
②成立,理由如下:
∵∠FAD=∠BAC=90°
∴∠BAD=∠CAF
在△BAD与△CAF中,
∵,
∴△BAD≌△CAF,
∴CF=BD,∠ACF=∠ACB=45°,
∴∠BCF=90°,∴CF⊥BD;
(2)当∠ACB=45°时,CF⊥BD(如图).
理由:过点A作AG⊥AC交CB的延长线于点G,则∠GAC=90°.
∵∠ACB=45°,∠AGC=90°﹣∠ACB,
∴∠AGC=90°﹣45°=45°,
∴∠ACB=∠AGC=45°,
∴AC=AG.
在△GAD与△CAF中,,
∴△GAD≌△CAF,
∴∠ACF=∠AGC=45°,∠BCF=∠ACB+∠ACF=45°+45°=90°,即CF⊥BC.