题目内容

【题目】如图,在Rt△ABC中,∠ACB=90°,CD⊥AB,垂足为D,AF平分∠CAB,交CD于点E,交CB于点F.若AC=3,AB=5,则CE的长为(  )

A. B. C. D.

【答案】A

【解析】

根据三角形的内角和定理得出∠CAF+∠CFA=90°,∠FAD+∠AED=90°,根据角平分线和对顶角相等得出∠CEF=CFE,即可得出EC=FC,再利用相似三角形的判定与性质得出答案.

过点FFGAB于点G

∵∠ACB=90°,CDAB,∴∠CDA=90°,∴∠CAF+CFA=90°,∠FAD+AED=90°,∵AF平分∠CAB,∴∠CAF=FAD,∴∠CFA=AED=CEF,∴CE=CF,∵AF平分∠CAB,∠ACF=AGF=90°,∴FC=FG,∵∠B=B,∠FGB=ACB=90°,∴△BFG∽△BAC,∴,∵AC=3AB=5,∠ACB=90°,∴BC=4,∴,∵FC=FG,∴,解得:FC=,即CE的长为.故选A

练习册系列答案
相关题目

违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com

精英家教网