题目内容
【题目】阅读材料:用配方法求最值.已知x,y为非负实数,
∵
∴,当且仅当“x=y”时,等号成立.
示例:当x>0时,求的最小值.
解:,当,即x=1时,y的最小值为6.
(1)尝试:当x>0时,求的最小值.
(2)问题解决:随着人们生活水平的快速提高,小轿车已成为越来越多家庭的交通工具,假设某种小轿车的购车费用为10万元,每年应缴保险费等各类费用共计0.4万元,n年的保养、维护费用总和为万元.问这种小轿车使用多少年报废最合算(即:使用多少年的年平均费用最少,年平均费用=)?最少年平均费用为多少万元?
【答案】(1)x=1时,y的最小值为3.(2)n=10时,最少年平均费用为2.5万元.
【解析】
试题分析:
解:(1),
∴当,即x=1时,y的最小值为3.
(2)年平均费用=
∴当,即时,最少年平均费用为2.5万元.
练习册系列答案
相关题目
【题目】某商店积压了100件某种商品,为使这批货物尽快脱手,该商店采取了如下销售方案,将价格提高到原来的2.5倍,再作3次降价处理;第一次降价30%,标出“亏本价”;第二次降价30%,标出“破产价”;第三次降价30%,标出“跳楼价”.3次降价处理销售结果如下表:
降价次数 | 一 | 二 | 三 |
销售件数 | 10 | 40 | 一抢而光 |
(1)跳楼价占原价的百分比是多少?
(2)该商品按新销售方案销售,相比原价全部售完,哪种方案更盈利?