题目内容
【题目】某果品批发公司以16元/千克购进一批樱桃.由往年市场销售情况的统计分析可知:当销售价定为25 元/千克时,每天可售出1 000 千克;若销售价定为20元/千克时,每天可售出2000千克.假设每天的销售量y(千克)与销售价x(元/千克)之间满足一次函数.
(1)试求y与x之间的函数关系式;
(2)在商品无积压且不考虑其他因素的条件下,销售价格定为多少时,才能使每天的销售毛利润W(元)最大?最大利润是多少?
【答案】(1) y=-200x+6000.(2) 当销售单价定为23元/千克时,W取得最大值,最大利润为9800元.
【解析】
试题分析:(1)利用待定系数法求一次函数解析式得出即可;
(2)利用销量乘以每件利润=总利润,进而得出即可.
试题解析:(1)由可知可设y=kx+b,将点(25,1000),(20,2000)代入可得:
,
解得:,
∴y=-200x+6000.
(2)根据题意得出:w=(x-16)×y
=(x-16)(-200x+6000)
=-200(x-23)2+9800,
∴当销售单价定为23元/千克时,W取得最大值,最大利润为9800元.
【题目】对于气温,有的地方用摄氏温度表示,有的地方用华氏温度表示,摄氏温度与华氏温度之间存在一次函数关系.从温度计的刻度上可以看出,摄氏温度x(℃)与华氏温度y(℉)有如下的对应关系:
x(℃) | … | -10 | 0 | 10 | 20 | 30 | … |
y(℉) | … | 14 | 32 | 50 | 68 | 86 | … |
(1)试确定y与x之间的函数关系。
(2)某天,滨海的最高气温是25℃,澳大利亚悉尼的最高气温80℉,这一天哪个地区的最高气温较高?
【题目】某食品厂从生产的袋装食品中抽出样品20袋,检测每袋的质量是否符合标准,超过或不足的部分分别用正、负数来表示,记录如下表:
与标准质量的差值 (单位:g) | 5 | 2 | 0 | 1 | 3 | 6 |
袋 数 | 1 | 4 | 3 | 4 | 5 | 3 |
(1)这批样品的平均质量比标准质量多还是少?多或少几克?
(2)若每袋标准质量为450克,则抽样检测的总质量是多少?