题目内容
【题目】如图所示,平行四边形ABCD的周长是26cm,对角线AC与BD相交于点O, AC⊥AB,E是BC的中点,△AOD的周长比△AOB的周长多3cm,则AE =_____cm.
【答案】4
【解析】分析:由□ABCD的周长为26cm,对角线AC、BD相交于点O,若△AOD的周长比△AOB的周长多3cm,可得AB+AD=13cm,AD-AB=3cm,求出AB和AD的长,得出BC的长,再由直角三角形斜边上的中线性质即可求得答案.
详解:∵□ABCD的周长为26cm,
∴AB+AD=13cm,OB=OD,
∵△AOD的周长比△AOB的周长多3cm,
∴(OA+OD+AD)-(OA+OB+AB)=AD-AB=3cm,
∴AB=5cm,AD=8cm.
∴BC=AD=8cm.
∵AC⊥AB,E是BC中点,
∴AE=BC=4cm;
故答案为:4.
练习册系列答案
相关题目