题目内容

【题目】十八世纪瑞士数学家欧拉证明了简单多面体中顶点数(V)、面数(F)、棱数(E)之间存在的一个有趣的关系式,被称为欧拉公式.请你观察下列几种简单的多面体模型,解答下列问题:

(1)根据上面的多面体模型,完成表格:

多面体

顶点数(V)

面数(F)

棱数(E)

四面体

4

4

正方体

8

12

正八面体

6

8

12

正十二面体

20

12

30

可以发现顶点数(V)、面数(F)、棱数(E)之间存在的关系式是_______________;

(2)若一个多面体的面数比顶点数大8,且有30条棱,则这个多面体的面数是______;

(3)某个玻璃饰品的外形是简单多面体,它的外表面是由三角形和八边形两种多边形拼接而成,且有24个顶点,每个顶点处有3条棱.设该多面体外表面三角形的个数为x,八边形的个数为y,求x+y的值.

【答案】(1)6,6,V+F-E=2 ;(2)20;(3)x+y=F=14

【解析】

(1)从表格观察发现:顶点数+面数-棱数=2;(2)代入(1)中的式子即可得到面数;(3)得到多面体的棱数,求得面数即为x+y的值.

解:(1)四面体的棱数为6;正八面体的顶点数为6;关系式为:V+F-E=2;

(2)由题意得:F-8+F-30=2,解得F=20;

(3)∵有24个顶点,每个顶点处都有3条棱,两点确定一条直线;

∴共有24×3÷2=36条棱,

那么24+F-36=2,解得F=14,

x+y=14.

故答案为:6,6;E=V+F-2;20;14.

练习册系列答案
相关题目

【题目】问题提出:用水平线和竖直线将平面分成若干个面积为1的小长方形格子,小长方形的顶点叫格点,以格点为顶点的多边形叫格点多边形.设格点多边形的面积为S,它各边上格点的个数和为x,多边形内部的格点数为n,S与x,n之间是否存在一定的数量关系呢?
(1)问题探究:
如图1,图中所示的格点多边形,其内部都只有一个格点,它们的面积与各边上格点的个数和的对应关系如下表,请填写下表并写出S与x之间的关系式S=

多边形的序号

多边形的面积S

2

2.5

3

4

各边上格点的个数和x

4


(2)在图2中所示的格点多边形,这些多边形内部都有且只有2个格点.探究此时所画的各个多边形的面积S与它各边上格点的个数和x之间的关系式S=
(3)请继续探索,当格点多边形内部有且只有n(n是正整数)个格点时,猜想S与x,n之间的关系式S=(用含有字母x,n的代数式表示)
(4)问题拓展:
请在正三角形网格中的类似问题进行探究:在图3、4中正三角形网格中每个小正三角形面积为1,小正三角形的顶点为格点,以格点为顶点的多边形称为格点多边形,图是该正三角形格点中的两个多边形.
根据图中提供的信息填表:

格点多边形各边上的格点的个数

格点多边形内部的格点个数

格点多边形的面积

多边形1(图3)

8

1

8

多边形2(图4)

7

3

11

一般格点多边形

a

b

S

则S与a,b之间的关系为S=(用含a,b的代数式表示).

违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com

精英家教网