题目内容
【题目】在平面直角坐标系中,点A(0,6),B(8,0),AB=10,如图作∠DBO=∠ABO,∠CAy=∠BAO,BD交y轴于点E,直线DO交AC于点C.
(1)①求证:△ACO≌△EDO;②求出线段AC、BD的位置关系和数量关系;
(2)动点P从A出发,沿A﹣O﹣B路线运动,速度为1,到B点处停止运动;动点Q从B出发,沿B﹣O﹣A运动,速度为2,到A点处停止运动.二者同时开始运动,都要到达相应的终点才能停止.在某时刻,作PE⊥CD于点E,QF⊥CD于点F.问两动点运动多长时间时△OPE与△OQF全等?
【答案】(1)AC∥BD,AC=BD﹣10;(2)当两动点运动时间为2、、12秒时,△OPE与△OQF全等.
【解析】
(1)①根据全等三角形的判定定理ASA证得结论;
②利用①中全等三角形的性质得到:AC∥BD,AC=BD-10;
(2)设运动的时间为t秒,(i)当点P、Q分别在y轴、x轴上时(ii)当点P、Q都在y轴上时,(iii)当点P在x轴上,Q在y轴时若二者都没有提前停止,当点Q提前停止时,列方程即可得到结论.
(1)①如图,
∵∠DBO=∠ABO,OB⊥AE,
∴∠BAO=∠BEO,
∴AB=BE,
∴AO=OE,
∵∠CAy=∠BAO,
∴∠CAy=∠BEO,
∴∠DEO=∠CAO
在△ACO与△EDO中,
,
∴△ACO≌△EDO(ASA);
②由①知,△ACO≌△EDO,
∴∠C=∠D,AC=DE,
∴AC∥BD,AC=BD﹣10;
(2)设运动的时间为t秒,
(i)当点P、Q分别在y轴、x轴上时PO=QO得:6﹣t=8﹣2t,解得t=2(秒),
(ii)当点P、Q都在y轴上时PO=QO得:6﹣t=2t﹣8,解得t=(秒),
(iii)当点P在x轴上,Q在y轴时若二者都没有提前停止,则PO=QO得:t﹣6=2t﹣8,解得t=2(秒)不合题意;
当点Q提前停止时,有t﹣6=6,解得t=12(秒),
综上所述:当两动点运动时间为2、、12秒时,△OPE与△OQF全等.
【题目】十八世纪瑞士数学家欧拉证明了简单多面体中顶点数(V)、面数(F)、棱数(E)之间存在的一个有趣的关系式,被称为欧拉公式.请你观察下列几种简单的多面体模型,解答下列问题:
(1)根据上面的多面体模型,完成表格:
多面体 | 顶点数(V) | 面数(F) | 棱数(E) |
四面体 | 4 | 4 | |
正方体 | 8 | 12 | |
正八面体 | 6 | 8 | 12 |
正十二面体 | 20 | 12 | 30 |
可以发现顶点数(V)、面数(F)、棱数(E)之间存在的关系式是_______________;
(2)若一个多面体的面数比顶点数大8,且有30条棱,则这个多面体的面数是______;
(3)某个玻璃饰品的外形是简单多面体,它的外表面是由三角形和八边形两种多边形拼接而成,且有24个顶点,每个顶点处有3条棱.设该多面体外表面三角形的个数为x,八边形的个数为y,求x+y的值.