题目内容
【题目】如图,在△ABC中,D是BC边上一点,AD=BD,AB=AC=CD,求∠BAC的度数.
【答案】108°.
【解析】
试题先设∠B=x,由AB=AC可知,∠C=x,由AD=DB可知∠B=∠DAB=x,由三角形外角的性质可知∠ADC=∠B+∠DAB=2x,根据AB=CD可知∠ADC=∠CAD=2x,再在△ACD中,由三角形内角和定理即可得出关于x的一元一次方程,求出x的值即可.
试题解析:设∠B=x,∵AB=AC,∴∠C=∠B=x,∵AD=DB,∴∠B=∠DAB=x,∴∠ADC=∠B+∠DAB=2x,∵AB=CD,∴∠ADC=∠CAD=2x,在△ACD中,∠C=x,∠ADC=∠CAD=2x,∴x+2x+2x=180°,解得x=36°.∴∠ABC=36°.
练习册系列答案
相关题目
【题目】十八世纪瑞士数学家欧拉证明了简单多面体中顶点数(V)、面数(F)、棱数(E)之间存在的一个有趣的关系式,被称为欧拉公式.请你观察下列几种简单的多面体模型,解答下列问题:
(1)根据上面的多面体模型,完成表格:
多面体 | 顶点数(V) | 面数(F) | 棱数(E) |
四面体 | 4 | 4 | |
正方体 | 8 | 12 | |
正八面体 | 6 | 8 | 12 |
正十二面体 | 20 | 12 | 30 |
可以发现顶点数(V)、面数(F)、棱数(E)之间存在的关系式是_______________;
(2)若一个多面体的面数比顶点数大8,且有30条棱,则这个多面体的面数是______;
(3)某个玻璃饰品的外形是简单多面体,它的外表面是由三角形和八边形两种多边形拼接而成,且有24个顶点,每个顶点处有3条棱.设该多面体外表面三角形的个数为x,八边形的个数为y,求x+y的值.