题目内容
【题目】(1)如图①,D是等边△ABC的边BA上一动点(点D与点B不重合),连接DC,以DC为边,在BC上方作等边△DCF,连接AF,你能发现AF与BD之间的数量关系吗?并证明你发现的结论;
(2)如图②,当动点D运动至等边△ABC边BA的延长线时,其他作法与(1)相同,猜想AF与BD在(1)中的结论是否仍然成立?若成立,请证明;
(3)Ⅰ.如图③,当动点D在等边△ABC边BA上运动时(点D与B不重合),连接DC,以DC为边在BC上方和下方分别作等边△DCF和等边△DCF′,连接AF,BF′,探究AF,BF′与AB有何数量关系?并证明你的探究的结论;
Ⅱ.如图④,当动点D在等边△ABC的边BA的延长线上运动时,其他作法与图③相同,Ⅰ中的结论是否成立?若不成立,是否有新的结论?并证明你得出的结论.
【答案】(1)AF=BD,理由见解析;(2)AF与BD在(1)中的结论成立,理由见解析;(3)Ⅰ. AF+BF′=AB,理由见解析,Ⅱ.Ⅰ中的结论不成立,新的结论是AF=AB+BF′,理由见解析.
【解析】
(1)由等边三角形的性质得BC=AC,∠BCA=60°,DC=CF,∠DCF=60°,从而得∠BCD=∠ACF,根据SAS证明△BCD≌△ACF,进而即可得到结论;
(2)根据SAS证明△BCD≌△ACF,进而即可得到结论;
(3)Ⅰ.易证△BCD≌△ACF(SAS),△BCF′≌△ACD(SAS),进而即可得到结论;Ⅱ.证明△BCF′≌△ACD,结合AF=BD,即可得到结论.
(1)结论:AF=BD,理由如下:
如图1中,∵△ABC是等边三角形,
∴BC=AC,∠BCA=60°,
同理知,DC=CF,∠DCF=60°,
∴∠BCA-∠DCA=∠DCF-∠DCA,即:∠BCD=∠ACF,
在△BCD和△ACF中,
∵,
∴△BCD≌△ACF(SAS),
∴BD=AF;
(2)AF与BD在(1)中的结论成立,理由如下:
如图2中,∵△ABC是等边三角形,
∴BC=AC,∠BCA=60°,
同理知,DC=CF,∠DCF=60°,
∴∠BCA+∠DCA=∠DCF+∠DCA,即∠BCD=∠ACF,
在△BCD和△ACF中,
∵,
∴△BCD≌△ACF(SAS),
∴BD=AF;
(3)Ⅰ.AF+BF′=AB,理由如下:
由(1)知,△BCD≌△ACF(SAS),则BD=AF;
同理:△BCF′≌△ACD(SAS),则BF′=AD,
∴AF+BF′=BD+AD=AB;
Ⅱ.Ⅰ中的结论不成立,新的结论是AF=AB+BF′,理由如下:
同理可得:,,
在△BCF′和△ACD中,
,
∴△BCF′≌△ACD(SAS),
∴BF′=AD,
又由(2)知,AF=BD,
∴AF=BD=AB+AD=AB+BF′,即AF=AB+BF′.