题目内容
【题目】如图,在△ABC中,∠C=90°,点O在AC上,以OA为半径的⊙O交AB于点D,BD的垂直平分线交BC于点E,交BD于点F,连接DE.
(1)求证:直线DE是⊙O的切线;
(2)若AC=6,BC=8,OA=2,求线段AD和DE的长.
【答案】(1)见解析;(2)4.75.
【解析】试题分析:(1)连接OD,通过线段垂直平分线的性质和等腰三角形的性质证明∠EDB+∠ODA=90°,进而得出OD⊥DE,根据切线的判定即可得出结论;
(2)连接OE,作OH⊥AD于H.则AH=DH,由△AOH∽△ABC,可得,推出AH=,AD=,设DE=BE=x,CE=8-x,根据OE2=DE2+OD2=EC2+OC2,列出方程即可解决问题;
试题解析:
(1)证明:连接OD,
∵EF垂直平分BD,
∴EB=ED,
∴∠B=∠EDB,
∵OA=OD,
∴∠ODA=∠A,
∵∠C=90°,
∴∠A+∠B=90°,
∴∠EDB+∠ODA=90°,
∴∠ODE=90°,
∴OD⊥DE,
∴DE是⊙O的切线.
(2)解:连接OE,作OH⊥AD于H.则AH=DH,
∵△AOH∽△ABC,
∴,
∴,
∴AH=,AD=,设DE=BE=x,CE=8﹣x,
∵OE2=DE2+OD2=EC2+OC2 ,
∴42+(8﹣x)2=22+x2 ,
解得x=4.75,
∴DE=4.75.
练习册系列答案
相关题目