题目内容
【题目】如图,点是边长为的正方形的对角线上的动点,过点分别作于点于点,连接并延长,交射线于点交射线于点,连接交于点当点在上运动时(不包括两点),以下结论:①;②;③;④的最小值是.其中正确的是_______.(把你认为正确结论的序号都填上)
【答案】②③④
【解析】
根据正方形的性质、相似三角形的判定与性质、矩形的判定与性质,对选项进行判断即可.
解:①错误.因为当点P与BD中点重合时,CM=0,显然FM≠CM;
②正确.连接PC交EF于O.根据对称性可知∠DAP=∠DCP,
∵四边形PECF是矩形,
∴OF=OC,
∴∠OCF=∠OFC,
∴∠OFC=∠DAP,
∵∠DAP+∠AMD=90°,
∴∠GFM+∠AMD=90°,
∴∠FGM=90°,
∴AH⊥EF.
③正确.∵AD∥BH,
∴∠DAP=∠H,
∵∠DAP=∠PCM,
∴∠PCM=∠H,
∵∠CPM=∠HPC,
∴△CPM∽△HPC,
∴PCHP=PMPCPCHP=PMPC,
∴PC2=PMPH,
根据对称性可知:PA=PC,
∴PA2=PMPH.
④正确.∵四边形PECF是矩形,
∴EF=PC,
∴当CP⊥BD时,PC的值最小,此时A、P、C共线,
∵AC=2,
∴PC的最小值为,
∴EF的最小值为;
故答案为:②③④.
练习册系列答案
相关题目