题目内容

【题目】如图,在三角形ABC中,AB=10,AC=BC=13,以BC为直径作⊙O交AB于点D,交AC于点G,直线DF⊥AC,于点F,交CB的延长线于点E.

(1)求证:DF是⊙O的切线;

(2)求cos∠ADF的值.

【答案】(1)证明见解析;(2)

【解析】

(1)连接OD和CD,根据圆周角定理求出∠BDC=90°,根据等腰三角形的性质求出AD=BD,根据三角形的中位线求出OD∥AC,求出OD⊥EF,根据切线的判定得出即可;

(2)根据余角的性质得到∠ADF=∠ODC,等量代换得到∠ADF=∠ODC,根据勾股定理得到CD=12,根据三角函数的定义即可得到结论.

(1)证明:连接OD,CD,

∵BC为⊙O的直径,

∴∠BDC=90°,即CD⊥AB,

∵AC=BC,AB=10,

∴AD=BD=5,

∵O为BC中点,

∴OD∥AC,

∵DF⊥AC,

∴OD⊥EF,

∵OD过O,

∴直线DF是⊙O的切线;

(2)∵∠ADC=∠BDC=90°,∠ODF=90°,

∴∠ADF=∠ODC,

∴OD=OC,

∴∠ODC=∠OCD,

∴∠ADF=∠ODC,

∵BD=5,BC=13,

∴CD=12,

练习册系列答案
相关题目

违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com

精英家教网