题目内容

如图,在△ABC中,∠BAC=90°,AB=AC,点D在BC上,且BD=BA,点E在BC的延长线上,且CE=CA。
(1)试求∠DAE的度数。
(2)如果把第(1)题中“AB=AC”的条件去掉,其余条件不变,那么∠DAE的度数会改变吗?试说明理由。
(1)∠DAE=45°;(2)∠DAE的度数不变

试题分析:(1)根据等腰直角三角形的性质求出∠B=∠ACB=45°,根据等边对等角的性质求出∠BAD=∠BDA,∠E=∠CAE,再根据三角形的一个外角等于和它不相邻的两个内角的和即可求出∠DAE的度数;
(2)由BD=BA可得∠BAD=∠BDA=(180°-∠B),由CE=CA可得∠E=∠CAE=∠ACB=(90°-∠B),再根据三角形外角的性质即可得到结论。
(1)∵∠BAC=90°,AB=AC,
∴∠B=∠ACB=45°,
∵BD=BA,
∴∠BAD=∠BDA=(180°-45°)=67.5°,
∵CE=CA,
∴∠E=∠CAE=×45°=22.5°,
∴∠DAE=∠BDA-∠E=67.5°-22.5°=45°;
(2)∵BD=BA,
∴∠BAD=∠BDA=(180°-∠B),
∵CE=CA,
∴∠E=∠CAE=∠ACB=(90°-∠B),
∴∠DAE=∠BDA-∠E=(180°-∠B)-(90°-∠B)=90°-∠B-45°+∠B=45°,
即∠DAE的度数不变.
点评:解答本题的关键是熟练掌握三角形外角的性质:三角形的一个外角等于与它不相邻的两个内角的和。
练习册系列答案
相关题目

违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com

精英家教网