题目内容

【题目】在平面直角坐标系中,反比例函数的图象经过点,直线x轴交于点

1)求的值;

2)已知点,过点P作平行于x轴的直线,交直线于点C,过点P作平行于y轴的直线交反比例函数的图象于点D,当时,结合函数的图象,求出n的值.

【答案】1;(2

【解析】

1)将A点代入反比例函数解析式,将B点代入一次函数解析式,即可求出答案;

2)由题意可得,PD=|-2n|,在分点D在点P的下方时和点D在点P的上方时两种情况求解即可.

解:(1反比例函数的图象经过点

直线x轴交于点

2)由(1)知,k=-4m=2

则反比例函数为:

直线函数解析式为:y=-2x+2

如图点P(n-2n)

P点平行于x轴的直线为:y=-2n

P点平行于y轴的直线为:x=n

则把y=-2n代入y=-2x+2

则有-2n=-2x+2,解得x=n+1

C点坐标为(n+1-2n)

PC=n+l-n=1

x=n代入

则有

P点坐标为(n)

PD=|-2n|

又∵PD=2PC

-2n>0时,-2n=2×1

n2+n-2=0

(n+2)(n-1)=0

n1=1n2=-2(舍去)

经检验n=1是原方程的解,

-2n<0时,2n-=2×1

n2-n-2=0

(n-2)(n+1)=0

n1=2n2=-1(舍去)

经检验n=2是原方程的解,

综上,当时,

练习册系列答案
相关题目

违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com

精英家教网