题目内容

已知:如图,AB是⊙O的直径,直线l与⊙O相切于点C,AD⊥l,垂足是D.
求证:AC平分∠DAB.
连接OC,
∵直线l与⊙O相切于点C,
∴OC⊥CD;
又∵AD⊥CD,
∴ADOC,
∴∠DAC=∠ACO;
又∵OA=OC,
∴∠ACO=∠CAO,
∴∠DAC=∠CAO,
即AC平分∠DAB.
练习册系列答案
相关题目

违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com

精英家教网