题目内容
如图,AB是⊙O的直径,AC和BD是它的两条切线,CO平分∠ACD.
(1)求证:CD是⊙O的切线;
(2)若AC=2,BD=3,求AB的长.
(1)求证:CD是⊙O的切线;
(2)若AC=2,BD=3,求AB的长.
(1)证明:过O点作OE⊥CD,垂足为E,
∵AC是⊙O的切线,
∴OA⊥AC,
∵CO平分∠ACD,OE⊥CD,
∴OA=OE,
∴CD是⊙O的切线.
(2)过C点作CF⊥BD,垂足为F,
∵AC,CD,BD都是⊙O的切线,
∴AC=CE=2,BD=DE=3,
∴CD=CE+DE=5,
∵∠CAB=∠ABD=∠CFB=90°,
∴四边形ABFC是矩形,
∴BF=AC=2,DF=BD-BF=1,
在Rt△CDF中,CF2=CD2-DF2=52-12=24,
∴AB=CF=2
.
∵AC是⊙O的切线,
∴OA⊥AC,
∵CO平分∠ACD,OE⊥CD,
∴OA=OE,
∴CD是⊙O的切线.
(2)过C点作CF⊥BD,垂足为F,
∵AC,CD,BD都是⊙O的切线,
∴AC=CE=2,BD=DE=3,
∴CD=CE+DE=5,
∵∠CAB=∠ABD=∠CFB=90°,
∴四边形ABFC是矩形,
∴BF=AC=2,DF=BD-BF=1,
在Rt△CDF中,CF2=CD2-DF2=52-12=24,
∴AB=CF=2
6 |
练习册系列答案
相关题目