题目内容

已知:如图,⊙O的直径AB与弦CD相交于E,
BC
=
BD
,⊙O的切线BF与弦AD的延长线相交于点F.
(1)求证:CDBF.
(2)连接BC,若⊙O的半径为4,cos∠BCD=
3
4
,求线段AD、CD的长.
(1)证明:∵直径AB平分
CD

∴AB⊥CD.
∵BF与⊙O相切,AB是⊙O的直径,
∴AB⊥BF.
∴CDBF.

(2)连接BD,BC.
∵AB是⊙O的直径,
∴∠ADB=90°.
在Rt△ADB中,
∵cos∠BAF=cos∠BCD=
3
4
,AB=4×2=8.
∴AD=AB•cos∠BAF=8×
3
4
=6.
∵AB⊥CD于E,
在Rt△AED中,cos∠BAF=cos∠BCD=
3
4
,sin∠BAF=
7
4

∴DE=AD•sin∠BAF=6×
7
4
=
3
2
7

∵直径AB平分
CD

∴CD=2DE=3
7

练习册系列答案
相关题目

违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com

精英家教网