题目内容

【题目】某校数学课题学习小组在“测量教学楼高度”的活动中,设计了以下两种方案:

课题

测量教学楼高度

方案

图示

测得数据

CD=6.9m,∠ACG=22°,∠BCG=13°,

EF=10m,∠AEB=32°,∠AFB=43°

参考数据

sin22°≈0.37,cos22°≈0.93,
tan22°≈0.40
sin13°≈0.22,cos13°≈0.97
tan13°≈0.23

sin32°≈0.53,cos32°≈0.85,tan32°≈0.62
sin43°≈0.68,cos43°≈0.73,tan43°≈0.93

请你选择其中的一种方法,求教学楼的高度(结果保留整数)

【答案】解:若选择方法一,解法如下: 在Rt△BGC中,∠BGC=90°,∠BCG=13°,BG=CD=6.9,
∵CG= =30,
在Rt△ACG中,∠AGC=90°,∠ACG=22°,
∵tan∠ACG=
∴AG=30×tan22°≈30×0.40=12,
∴AB=AG+BG=12+6.9≈19(米).
答:教学楼的高度约19米.
若选择方法二,解法如下:
在Rt△AFB中,∠ABF=90°,∠AFB=43°,
∵tan∠AFB=
∴FB=
在Rt△ABE中,∠ABE=90°,∠AEB=32°,
∵tan∠AEB=
∴EB=
∵EF=EB﹣FB且EF=10,
=10,解得AB=18.6≈19(米).
答:教学楼的高度约19米
【解析】若选择方法一,在Rt△BGC中,根据CG= 即可得出CG的长,同理,在Rt△ACG中,根据tan∠ACG= 可得出AG的长,根据AB=AG+BG即可得出结论. 若选择方法二,在Rt△AFB中由tan∠AFB= 可得出FB的长,同理,在Rt△ABE中,由tan∠AEB= 可求出EB的长,由EF=EB﹣FB且EF=10,可知 =10,故可得出AB的长.

练习册系列答案
相关题目

违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com

精英家教网