题目内容
【题目】(1)方法选择:如图①,四边形ABCD是⊙O的内接四边形,连接AC,BD,AB=BC=AC.求证:BD=AD+CD.
小颖认为可用截长法证明:在DB上截取DM=AD,连接AM…
小军认为可用补短法证明:延长CD至点N,使得DN=AD…
请你选择一种方法证明.
(2)类比探究:(探究1)如图②,四边形ABCD是⊙O的内接四边形,连接AC,BD,BC是⊙O的直径,AB=AC.试用等式表示线段AD,BD,CD之间的数量关系,井证明你的结论.
(探究2)如图③,四边形ABCD是⊙O的内接四边形,连接AC,BD.若BC是⊙O的直径,∠ABC=30°,则线段AD,BD,CD之间的等量关系式是 .
(3)拓展猜想:如图④,四边形ABCD是⊙O的内接四边形,连接AC,BD.若BC是⊙O的直径,BC:AC:AB=a:b:c,则线段AD,BD,CD之间的等量关系式是 .
【答案】(1)选截长法,见解析;(2)探究1 :BD=CD+AD,见解析;探究2: BD=CD+2AD;(3)BD=CD+AD.
【解析】
(1)方法选择:根据等边三角形的性质得到∠ACB=∠ABC=60°,如图①,在BD上截取DM=AD,连接AM,由圆周角定理得到∠ADB=∠ACB=60°,得到AM=AD,根据全等三角形的性质得到BM=CD,于是得到结论;
(2)类比探究:探究1:如图②,由BC是⊙O的直径,得到∠BAC=90°,根据等腰直角三角形的性质得到∠ABC=∠ACB=45°,过A作AM⊥AD交BD于M,推出△ADM是等腰直角三角形,求得DM=AD根据全等三角形的性质得到结论;
探究2:如图③,根据圆周角定理和三角形的内角和得到∠BAC=90°,∠ACB=60°,过A作AM⊥AD交BD于M,求得∠AMD=30°,根据直角三角形的性质得到MD=2AD,根据相似三角形的性质得到BM=CD,于是得到结论;
(3)如图④,由BC是⊙O的直径,得到∠BAC=90°,过A作AM⊥AD交BD于M,求得∠MAD=90°,根据相似三角形的性质得到BM=CD,DM=AD,于是得到结论.
(1)方法选择:∵AB=BC=AC,
∴∠ACB=∠ABC=60°,
如图①,在BD上截取DM=AD,连接AM,
∵∠ADB=∠ACB=60°,
∴△ADM是等边三角形,
∴AM=AD,
∵∠ABM=∠ACD,
∵∠AMB=∠ADC=120°,
∴△ABM≌△ACD(AAS),
∴BM=CD,
∴BD=BM+DM=CD+AD;
(2)类比探究:探究1:如图②,
∵BC是⊙O的直径,
∴∠BAC=90°,
∵AB=AC,
∴∠ABC=∠ACB=45°,
过A作AM⊥AD交BD于M,
∵∠ADB=∠ACB=45°,
∴△ADM是等腰直角三角形,
∴AM=AD,∠AMD=45°,
∴DM=AD,
∴∠AMB=∠ADC=135°,
∵∠ABM=∠ACD,
∴△ABM≌△ACD(AAS),
∴BM=CD,
∴BD=BM+DM=CD+AD;
探究2:如图③,
∵若BC是⊙O的直径,∠ABC=30°,
∴∠BAC=90°,∠ACB=60°,
过A作AM⊥AD交BD于M,
∵∠ADB=∠ACB=60°,
∴∠AMD=30°,
∴MD=2AD,
∵∠ABD=∠ACD,∠AMB=∠ADC=150°,
∴△ABM∽△ACD,
∴,
∴BM=CD,
∴BD=BM+DM=CD+2AD;
故答案为:BD=CD+2AD;
(3)拓展猜想:BD=BM+DM=CD+AD;
理由:如图④,
∵若BC是⊙O的直径,
∴∠BAC=90°,
过A作AM⊥AD交BD于M,
∴∠MAD=90°,
∴∠BAM=∠DAC,
∴△ABM∽△ACD,
∴,
∴BM=CD,
∵∠ADB=∠ACB,∠BAC=∠NAD=90°,
∴△ADM∽△ACB,
∴,
∴DM=AD,
∴BD=BM+DM=CD+AD.
故答案为:BD=BM+DM=CD+AD.