题目内容

【题目】如图,在△ABC中,∠C=90°,∠B=30°,以A为圆心,任意长为半径画弧分别交AB、AC于点M和N,再分别以M、N为圆心,大于 MN的长为半径画弧,两弧交于点P,连结AP并延长交BC于点D,则下列说法中正确的个数是( )
①AD是∠BAC的平分线;②∠ADC=60°;③点D在AB的中垂线上;④SDAC:SABC=1:3.

A.1
B.2
C.3
D.4

【答案】D
【解析】解:

①根据作图的过程可知,AD是∠BAC的平分线.
故①正确;
②如图,
∵在△ABC中,∠C=90°,∠B=30°,
∴∠CAB=60°.
又∵AD是∠BAC的平分线,
∴∠1=∠2= ∠CAB=30°,
∴∠3=90°﹣∠2=60°,即∠ADC=60°.
故②正确;
③∵∠1=∠B=30°,
∴AD=BD,
∴点D在AB的中垂线上.
故③正确;
④∵如图,在直角△ACD中,∠2=30°,
∴CD= AD,
∴BC=CD+BD= AD+AD= AD,SDAC= ACCD= ACAD.
∴SABC= ACBC= AC AD= ACAD,
∴SDAC:SABC= ACAD: ACAD=1:3.
故④正确.
综上所述,正确的结论是:①②③④,共有4个.
故选D.
【考点精析】根据题目的已知条件,利用角平分线的性质定理和线段垂直平分线的性质的相关知识可以得到问题的答案,需要掌握定理1:在角的平分线上的点到这个角的两边的距离相等; 定理2:一个角的两边的距离相等的点,在这个角的平分线上;垂直于一条线段并且平分这条线段的直线是这条线段的垂直平分线;线段垂直平分线的性质定理:线段垂直平分线上的点和这条线段两个端点的距离相等.

练习册系列答案
相关题目

违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com

精英家教网