题目内容
【题目】在直角坐标系xoy中,已知点P(0, ),曲线C的参数方程为 (φ为参数).以原点为极点,x轴正半轴为极轴建立极坐标系,直线l的极坐标方程为ρ= . (Ⅰ)判断点P与直线l的位置关系并说明理由;
(Ⅱ)设直线l与曲线C的两个交点分别为A,B,求 + 的值.
【答案】解:(Ⅰ)点P在直线l上,理由如下: 直线l:ρ= ,即 = ,亦即 = ,
∴直线l的直角坐标方程为: x+y= ,易知点P在直线l上.
(Ⅱ)由题意,可得直线l的参数方程为 (t为参数),曲线C的普通方程为 =1.
将直线l的参数方程代入曲线C的普通方程,得5t2+12t﹣4=0,
设两根为t1 , t2 ,
∴t1+t2=﹣ ,t1t2=﹣ ,
∴|PA|+|PB|=|t1﹣t2|= = ,
∴ + = = = .
【解析】(Ⅰ)点P在直线l上,理由如下:直线l:ρ= ,展开可得 = ,可得直线l的直角坐标方程即可验证.(Ⅱ)由题意,可得直线l的参数方程为 (t为参数),曲线C的普通方程为 =1.将直线l的参数方程代入曲线C的普通方程,得5t2+12t﹣4=0,可得|PA|+|PB|=|t1﹣t2|= ,即可得出.
【题目】在“新零售”模式的背景下,某大型零售公司为推广线下分店,计划在S市的A区开设分店.为了确定在该区开设分店的个数,该公司对该市已开设分店的其他区的数据作了初步处理后得到下列表格.记x表示在各区开设分店的个数,y表示这x个分店的年收入之和.
x(个) | 2 | 3 | 4 | 5 | 6 |
y(百万元) | 2.5 | 3 | 4 | 4.5 | 6 |
(Ⅰ)该公司已经过初步判断,可用线性回归模型拟合y与x的关系,求y关于x的线性回归方程y= ;
(Ⅱ)假设该公司在A区获得的总年利润z(单位:百万元)与x,y之间的关系为z=y﹣0.05x2﹣1.4,请结合(Ⅰ)中的线性回归方程,估算该公司应在A区开设多少个分店时,才能使A区平均每个分店的年利润最大?
参考公式: = x+a, = = ,a= ﹣ .