题目内容

【题目】函数f(x)=Asin(ωx+φ)(ω>0, )的部分图象如图所示,将函数f(x)的图象向右平移 个单位后得到函数g(x)的图象,若函数g(x)在区间 )上的值域为[﹣1,2],则θ等于(
A.
B.
C.
D.

【答案】B
【解析】解:根据函数f(x)=Asin(ωx+φ)(ω>0, )的部分图象, 可得A=﹣2, = = ,∴ω=2.
再根据五点法作图可得2 +φ=π,∴φ= ,f(x)=﹣2sin(2x+ ).
将函数f(x)的图象向右平移 个单位后得到函数g(x)=﹣2sin(2x﹣ + )=﹣2sin(2x﹣ )的图象,
若函数g(x)在区间 )上,2x﹣ ∈[﹣π,2θ﹣ ],
由于g(x)的值域为[﹣1,2],故﹣2sin(2x﹣ )的最小值为﹣1,
此时,sin(2θ﹣ )= ,则2θ﹣ = ,求得θ=
故选:B.
【考点精析】认真审题,首先需要了解函数y=Asin(ωx+φ)的图象变换(图象上所有点向左(右)平移个单位长度,得到函数的图象;再将函数的图象上所有点的横坐标伸长(缩短)到原来的倍(纵坐标不变),得到函数的图象;再将函数的图象上所有点的纵坐标伸长(缩短)到原来的倍(横坐标不变),得到函数的图象).

练习册系列答案
相关题目

违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com

精英家教网