题目内容

【题目】如图,要证明平行四边形ABCD为正方形,那么我们需要在四边形ABCD是平行四边形的基础上,进一步证明( )

A.AB=ADACBDB.AB=ADAC=BDC.A=∠BAC=BDD.ACBD互相垂直平分

【答案】B

【解析】

:A.根据有一组邻边相等的平行四边形是菱形,或者对角线互相垂直的平行四边形是菱形,所以不能判断平行四边形ABCD是正方形;

B.根据邻边相等的平行四边形是菱形,对角线相等的平行四边形为矩形,所以能判断四边形ABCD是正方形;

C.根据一组邻角相等的平行四边形是矩形,对角线相等的平行四边形也是矩形,即只能证明四边形ABCD是矩形,不能判断四边形ABCD是正方形;

D.根据对角线互相垂直的平行四边形是菱形,对角线互相平分的四边形是平行四边形,所以不能判断四边形ABCD是正方形.

故选B.

练习册系列答案
相关题目

违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com

精英家教网