题目内容
【题目】如图,已知正方ABCD内一动点E到A、B、C三点的距离之和的最小值为,则这个正方形的边长为_____________
【答案】
【解析】
将△ABE绕点A旋转60°至△AGF的位置,根据旋转的性质可证△AEF和△ABG为等边三角形,即可证明EF=AE,GF=BE,所以根据两点之间线段最短EA+EB+EC=GF+EF+EC≥GC,表示Rt△GMC的三边,根据勾股定理即可求出正方形的边长.
解:如图,将△ABE绕点A旋转60°至△AGF的位置,连接EF,GC,BG,过点G作BC 的垂线交CB的延长线于点M.设正方形的边长为2m,
∵四边形ABCD为正方形,
∴AB=BC=2m,∠ABC=∠ABM=90°,
∵△ABE绕点A旋转60°至△AGF,
∴,
∴△AEF和△ABG为等边三角形,
∴AE=EF,∠ABG=60°,
∴EA+EB+EC=GF+EF+EC≥GC,
∴GC=,
∵∠GBM=90°-∠ABG =30°,
∴在Rt△BGM中,GM=m,BM=,
Rt△GMC中,勾股可得,
即:,
解得:,
∴边长为.
故答案为:.
练习册系列答案
相关题目