题目内容
【题目】已知关于x的一元二次方程x2﹣(2k+1)x+4k﹣3=0,
(1)求证:无论k取什么实数值,该方程总有两个不相等的实数根?
(2)当Rt△ABC的斜边a=,且两条直角边的长b和c恰好是这个方程的两个根时,求k的值.
【答案】(1)见解析;(2)3
【解析】
(1)根据根的判别式的符号来证明;
(2)根据韦达定理得到b+c=2k+1,bc=4k-3.又在直角△ABC中,根据勾股定理,得(b+c)2﹣2bc=()2,由此可以求得k的值.
(1)证明:∵△=[﹣(2k+1)]2﹣4×1×(4k﹣3)=4k2﹣12k+13=(2k﹣3)2+4,
∴无论k取什么实数值,总有=(2k﹣3)2+4>0,即△>0,
∴无论k取什么实数值,该方程总有两个不相等的实数根;
(2)解:∵两条直角边的长b和c恰好是方程x2﹣(2k+1)x+4k﹣3=0的两个根,得
∴b+c=2k+1,bc=4k﹣3,
又∵在直角△ABC中,根据勾股定理,得
b2+c2=a2,
∴(b+c)2﹣2bc=()2,即(2k+1)2﹣2(4k﹣3)=31,
整理后,得k2﹣k﹣6=0,解这个方程,得k=﹣2或k=3,
当k=﹣2时,b+c=﹣4+1=﹣3<0,不符合题意,舍去,当k=3时,b+c=2×3+1=7,符合题意,故k=3.
练习册系列答案
相关题目