题目内容

已知:如图,AB是⊙O的直径,点C是⊙O上的一点,CD交AB的延长线于D,∠DCB=∠CAB.
(1)求证:CD为⊙O的切线.
(2)若CD=4,BD=2,求⊙O的半径长.
(1)证明:∵∠DCB=∠CAB,∠CAB=∠ACO,
∴∠DCB=∠ACO,
∵AB是⊙O的直径,
∴∠ACB=90°,
即∠ACO+∠OCB=90°
∴∠DCB+∠OCB=90°,
∴∠OCD=90°
∴CD为⊙O的切线;

(2)设⊙O的半径为R,则OD=R+2,
∵CD=4,BD=2,∠OCD=90°,
由勾股定理得R2+42=(R+2)2
解得:R=3,
∴⊙O的半径长为3.
练习册系列答案
相关题目

违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com

精英家教网