题目内容

如图,在Rt△ABC中,∠C=90°,以AC为直径作⊙O,交AB于D,过点O作OEAB,交BC于E.
(1)求证:ED为⊙O的切线;
(2)若⊙O的半径为3,ED=4,EO的延长线交⊙O于F,连DF、AF,求△ADF的面积.
(1)证明:连接OD,CD,
∵AC是⊙O的直径,
∴∠CDA=90°=∠BDC,
∵OEAB,CO=AO,
∴BE=CE,
∴DE=CE,
∵在△ECO和△EDO中
DE=CE
EO=EO
OC=OD

∴△ECO≌△EDO,
∴∠EDO=∠ACB=90°,
即OD⊥DE,OD过圆心O,
∴ED为⊙O的切线.

(2)过O作OM⊥AB于M,过F作FN⊥AB于N,
则OMFN,∠OMN=90°,
∵OEAB,
∴四边形OMFN是矩形,
∴FN=OM,
∵DE=4,OC=3,由勾股定理得:OE=5,
∴AC=2OC=6,
∵OEAB,
∴△OEC△ABC,
OC
AC
=
OE
AB

3
6
=
5
AB

∴AB=10,
在Rt△BCA中,由勾股定理得:BC=
102-62
=8,

sin∠BAC=
BC
AB
=
OM
OA
=
8
10

OM
3
=
4
5

OM=
12
5
=FN,
∵cos∠BAC=
AC
AB
=
AM
OA
=
3
5

∴AM=
9
5

由垂径定理得:AD=2AM=
18
5

即△ADF的面积是
1
2
AD×FN=
1
2
×
18
5
×
12
5
=
108
25

答:△ADF的面积是
108
25
练习册系列答案
相关题目

违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com

精英家教网