题目内容
已知二次函数y=x2-2mx+4m-8
(1)当x≤2时,函数值y随x的增大而减小,求m的取值范围.
(2)以抛物线y=x2-2mx+4m-8的顶点A为一个顶点作该抛物线的内接正三角形AMN(M,N两点在拋物线上),请问:△AMN的面积是与m无关的定值吗?若是,请求出这个定值;若不是,请说明理由.
(3)若抛物线y=x2-2mx+4m-8与x轴交点的横坐标均为整数,求整数m的最小值.
(1)当x≤2时,函数值y随x的增大而减小,求m的取值范围.
(2)以抛物线y=x2-2mx+4m-8的顶点A为一个顶点作该抛物线的内接正三角形AMN(M,N两点在拋物线上),请问:△AMN的面积是与m无关的定值吗?若是,请求出这个定值;若不是,请说明理由.
(3)若抛物线y=x2-2mx+4m-8与x轴交点的横坐标均为整数,求整数m的最小值.
(1)二次函数y=x2-2mx+4m-8的对称轴是:x=m.
∵当x≤2时,函数值y随x的增大而减小,
而x≤2应在对称轴的左边,
∴m≥2.
(2)如图:顶点A的坐标为(m,-m2+4m-8)
△AMN是抛物线的内接正三角形,
MN交对称轴于点B,tan∠AMB=tan60°=
=
,
则AB=
BM=
BN,
设BM=BN=a,则AB=
a,
∴点M的坐标为(m+a,
a-m2+4m-8),
∵点M在抛物线上,
∴
a-m2+4m-8=(m+a)2-2m(m+a)+4m-8,
整理得:a2-
a=0
得:a=
(a=0舍去)
所以△AMN是边长为2
的正三角形,
S△AMN=
×2
×3=3
,与m无关;
(3)当y=0时,x2-2mx+4m-8=0,
解得:x=m±
=m±
,
∵抛物线y=x2-2mx+4m-8与x轴交点的横坐标均为整数,
∴(m-2)2+4应是完全平方数,
∴m的最小值为:m=2.
∵当x≤2时,函数值y随x的增大而减小,
而x≤2应在对称轴的左边,
∴m≥2.
(2)如图:顶点A的坐标为(m,-m2+4m-8)
△AMN是抛物线的内接正三角形,
MN交对称轴于点B,tan∠AMB=tan60°=
AB |
BM |
3 |
则AB=
3 |
3 |
设BM=BN=a,则AB=
3 |
∴点M的坐标为(m+a,
3 |
∵点M在抛物线上,
∴
3 |
整理得:a2-
3 |
得:a=
3 |
所以△AMN是边长为2
3 |
S△AMN=
1 |
2 |
3 |
3 |
(3)当y=0时,x2-2mx+4m-8=0,
解得:x=m±
m2-4m+8 |
(m-2)2+4 |
∵抛物线y=x2-2mx+4m-8与x轴交点的横坐标均为整数,
∴(m-2)2+4应是完全平方数,
∴m的最小值为:m=2.
练习册系列答案
相关题目