题目内容

已知二次函数y=x2-2mx+4m-8
(1)当x≤2时,函数值y随x的增大而减小,求m的取值范围.
(2)以抛物线y=x2-2mx+4m-8的顶点A为一个顶点作该抛物线的内接正三角形AMN(M,N两点在拋物线上),请问:△AMN的面积是与m无关的定值吗?若是,请求出这个定值;若不是,请说明理由.
(3)若抛物线y=x2-2mx+4m-8与x轴交点的横坐标均为整数,求整数m的最小值.
(1)二次函数y=x2-2mx+4m-8的对称轴是:x=m.
∵当x≤2时,函数值y随x的增大而减小,
而x≤2应在对称轴的左边,
∴m≥2.

(2)如图:顶点A的坐标为(m,-m2+4m-8)
△AMN是抛物线的内接正三角形,
MN交对称轴于点B,tan∠AMB=tan60°=
AB
BM
=
3

则AB=
3
BM=
3
BN,
设BM=BN=a,则AB=
3
a,
∴点M的坐标为(m+a,
3
a-m2+4m-8),
∵点M在抛物线上,
3
a-m2+4m-8=(m+a)2-2m(m+a)+4m-8,
整理得:a2-
3
a=0
得:a=
3
(a=0舍去)
所以△AMN是边长为2
3
的正三角形,
S△AMN=
1
2
×2
3
×3=3
3
,与m无关;

(3)当y=0时,x2-2mx+4m-8=0,
解得:x=m±
m2-4m+8
=m±
(m-2)2+4

∵抛物线y=x2-2mx+4m-8与x轴交点的横坐标均为整数,
∴(m-2)2+4应是完全平方数,
∴m的最小值为:m=2.
练习册系列答案
相关题目

违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com

精英家教网