题目内容
【题目】已知α是锐角,且点A(,a),B(sinα+cosα,b), C(-m2+2m-2,c)都在二次函数y=-x2+x+3的图象上,那么a、b、c的大小关系是 ()
A. a<b<c B. a<c<b C. b<c<a D. c<b<a
【答案】D
【解析】
先计算对称轴为直线x=,抛物线开口向下,可知A点为顶点(最高点),a最大;再根据B、C两点与对称轴的远近,比较纵坐标的大小.
抛物线y=-x2+x+3的对称轴是直线x=,开口向下,点A(,a)为顶点,即最高点,
所以,a最大,A、B错误;
又1<sinα+cosα<2,-m2+2m-2=-(m-1)2-1≤-1,
可知,B点离对称轴近,C点离对称轴远,
由于抛物线开口向下,
离对称轴越远,函数值越小,c<b,C错误;
故选D.
练习册系列答案
相关题目
【题目】吴京同学根据学习函数的经验,对一个新函数的图象和性质进行了如下探究,请帮他把探究过程补充完整.
(1)该函数的自变量的取值范围是______.
(2)列表:
… | 0 | 1 | 2 | 3 | 4 | 5 | 6 | … | |||
… | … |
表中________,_______.
(3)描点、连线
在下面的格点图中,建立适当的平面直角坐标系中,描出上表中各对对应值为坐标的点(其中为横坐标,为纵坐标),并根据描出的点画出该函数的图象:
(4)观察所画出的函数图象,写出该函数的两条性质:
①_______________________________________;
②_______________________________________.
(5)函数与直线的交点有2个,那么的取值范围_________.