题目内容

如图,点C是线段AB上的任意一点(异于点A、B),分别以AC、BC为边在线段AB的两侧作正方形ACDE和BCFG,连接AF、BD.
(1)证明:AF=BD;
(2)当点C位于线段AB何处时,边AF、BD所在直线互相平行?请说明理由.
(1)证明:
∵四边形ACDE和BCFG都是正方形,
∴AC=DC,BC=CF,∠ACD=∠BCD=90°,
∴∠ACF=∠BCD=90°,
在△ACF和△DCB中,
AC=DC
∠ACF=∠DCB
CF=CB

∴△ACF≌△DCB,
∴AF=BD.
(2)当点C位于线段AB中点时,边AF、BD所在直线互相平行.
理由如下:
∵四边形ACDE和BCFG都是正方形,
∴AC=DC=BC=CF,
∵∠ACF=∠BCD=90°,
∴△ACF和△BCD均为等腰三角形,
∴∠CAF=∠CBD=45°,
∴AFBD.
练习册系列答案
相关题目

违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com

精英家教网