题目内容
已知:如图,在正方形ABCD外取一点E,连接AE、BE、DE.过点A作AE的垂线交DE于点P.若AE=AP=1,PB=
.下列结论:
①△APD≌△AEB;
②点B到直线AE的距离为
;
③EB⊥ED;
④S△APD+S△APB=1+
;
⑤S正方形ABCD=4+
.其中正确结论的序号是( )
5 |
①△APD≌△AEB;
②点B到直线AE的距离为
2 |
③EB⊥ED;
④S△APD+S△APB=1+
6 |
⑤S正方形ABCD=4+
6 |
A.①③④ | B.①②⑤ | C.③④⑤ | D.①③⑤ |
①∵∠EAB+∠BAP=90°,∠PAD+∠BAP=90°,
∴∠EAB=∠PAD,
又∵AE=AP,AB=AD,
∴△APD≌△AEB(故①正确);
③∵△APD≌△AEB,
∴∠APD=∠AEB,
又∵∠AEB=∠AEP+∠BEP,∠APD=∠AEP+∠PAE,
∴∠BEP=∠PAE=90°,
∴EB⊥ED(故③正确);
②过B作BF⊥AE,交AE的延长线于F,
∵AE=AP,∠EAP=90°,
∴∠AEP=∠APE=45°,
又∵③中EB⊥ED,BF⊥AF,
∴∠FEB=∠FBE=45°,
又∵BE=
=
=
,
∴BF=EF=
(故②不正确);
④如图,连接BD,在Rt△AEP中,
∵AE=AP=1,
∴EP=
,
又∵PB=
,
∴BE=
,
∵△APD≌△AEB,
∴PD=BE=
,
∴S△ABP+S△ADP=S△ABD-S△BDP=
S正方形ABCD-
×DP×BE=
×(4+
)-
×
×
=
+
.(故④不正确).
⑤∵EF=BF=
,AE=1,
∴在Rt△ABF中,AB2=(AE+EF)2+BF2=4+
,
∴S正方形ABCD=AB2=4+
(故⑤正确);
故选:D.
∴∠EAB=∠PAD,
又∵AE=AP,AB=AD,
∴△APD≌△AEB(故①正确);
③∵△APD≌△AEB,
∴∠APD=∠AEB,
又∵∠AEB=∠AEP+∠BEP,∠APD=∠AEP+∠PAE,
∴∠BEP=∠PAE=90°,
∴EB⊥ED(故③正确);
②过B作BF⊥AE,交AE的延长线于F,
∵AE=AP,∠EAP=90°,
∴∠AEP=∠APE=45°,
又∵③中EB⊥ED,BF⊥AF,
∴∠FEB=∠FBE=45°,
又∵BE=
BP2-PE2 |
5-2 |
3 |
∴BF=EF=
| ||
2 |
④如图,连接BD,在Rt△AEP中,
∵AE=AP=1,
∴EP=
2 |
又∵PB=
5 |
∴BE=
3 |
∵△APD≌△AEB,
∴PD=BE=
3 |
∴S△ABP+S△ADP=S△ABD-S△BDP=
1 |
2 |
1 |
2 |
1 |
2 |
6 |
1 |
2 |
3 |
3 |
1 |
2 |
| ||
2 |
⑤∵EF=BF=
| ||
2 |
∴在Rt△ABF中,AB2=(AE+EF)2+BF2=4+
6 |
∴S正方形ABCD=AB2=4+
6 |
故选:D.
练习册系列答案
相关题目