题目内容
【题目】某自行车经营店销售型,型两种品牌自行车,今年进货和销售价格如下表:(今年1年内自行车的售价与进价保持不变)
型车 | 型车 | |
进货价格(元/辆) | 1000 | 1100 |
销售价格(元/辆) | 1500 |
今年经过改造升级后,型车每辆销售价比去年增加400元.已知型车去年1月份销售总额为3.6万元,今年1月份型车的销售数量与去年1月份相同,而销售总额比去年1月份增加.
(1)若设今年1月份的型自行车售价为元/辆,求的值?(用列方程的方法解答)
(2)该店计划8月份再进一批型和型自行车共50辆,且型车数量不超过型车数量的2倍,应如何进货才能使这批自行车获利最多?
(3)该店为吸引客源,准备增购一种进价为500元的型车,预算用8万元购进这三种车若干辆,其中型与型的数量之比为,则该店至少可以购进三种车共多少辆?
【答案】(1)今年1月份的型自行车售价为1200元;(2)型进17辆,型进33辆时获利最多;(3)该店至少可以共购进92辆.
【解析】
(1)设今年1月份的型自行车售价为元,根据题意列出方程,求解即可;
(2)设购买型自行车辆,根据型车数量不超过型车数量的2倍列出不等式求出a的范围,再列出W和a的关系式,据此求出W的最大值即可;
(3)设购进型辆,则型辆,型辆,列出n和a的方程,解出,得到当时,最小值为92.
解:(1)设今年1月份的型自行车售价为元,
则去年行自行车售价为元.
根据题意,得,
解得:,
经检验,是所列分式方程的解,
∴今年1月份的型自行车售价为1200元;
(2)设购买型自行车辆,则型自行车辆,
解得:,且为整数
所以利润
因为,所以随的增大而减小,
∴当时,即型进17辆,型进33辆时获利最多.
(3)设购进型辆,则型辆,型辆,
根据题意,得:
解得:,
因为,所以,且为整数,
因为为整数,所以为5的倍数,
∴当时,最小值为92,
答:该店至少可以共购进92辆.