题目内容

如图,在直角梯形ABCD中,∠B=90°,ADBC,且AD=4cm,AB=6cm,DC=10cm.若动点P从A点出发,以每秒4cm的速度沿线段AD、DC向C点运动;动点Q从C点出发以每秒5cm的速度沿CB向B点运动.当Q点到达B点时,动点P、Q同时停止运动.设点P、Q同时出发,并运动了t秒,
(1)直角梯形ABCD的面积为______cm2
(2)当t=______秒时,四边形PQCD成为平行四边形?
(3)当t=______秒时,AQ=DC;
(4)是否存在t,使得P点在线段DC上且PQ⊥DC?若存在,求出此时t的值;若不存在,说明理由.
(1)作DM⊥BC于点M.则四边形ABMD是平行四边形
∴DM=AB=6cm.
在直角△CDM中,CM=
CD2-DM2
=8cm
∴BC=BM+CM=4+8=12cm
∴直角梯形ABCD的面积为
1
2
(AD+BC)•AB=48cm2

(2)当PD=CQ时,四边形PQCD成为平行四边形
即4-4t=5t
解得t=
4
9


(3)BQ=12-5t
在直角△ABQ中,AB2+BQ2=AQ2
即62+(12-5t)2=102
解得t=
4
5


(4)存在,t=
7
4

连接QD,则CP=14-4t,CQ=5t
若QP⊥CD,则2S△DQC=CQ×AB=CD×QP
得QP=3t
在Rt△QPC中
QP2+PC2=CQ2,即(3t)2+(14-4t)2=(5t)2
解之得t=
7
4

求得BC=12
CP=14-4t=7<10
CQ=5t=
35
4
<12
所以,存在t,使得P点在线段DC上,且PQ⊥DC.
练习册系列答案
相关题目

违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com

精英家教网