题目内容
【题目】如图,矩形ABCD中,由8个面积均为1的小正方形组成的L型模板如图放置,则矩形ABCD的周长为 _ .
【答案】8
【解析】
根据AAS可以证明△ABE≌△ECF,得AB=CE,BE=CF;根据两角对应相等,可以证明△ECF∽△FDG,则DF:CE=FG:EF=1:2.设BE=x,则AB=2x,根据勾股定理求得x的值,进而求得矩形的面积.
根据等角的余角相等,得
∠BAE=∠CEF=∠DFG.
又∠B=∠C=∠D=90°,AE=EF=4,FG=2,
∴△ABE≌△ECF,△ECF∽△FDG.
∴AB=CE,BE=CF,DF:CE=FG:EF=1:2.
设BE=x,则AB=2x,根据勾股定理,得
x2+4x2=16,
x=.
则矩形ABCD的面积为:2x×3x=6x2=.
练习册系列答案
相关题目