题目内容

【题目】如图1,是全国最大的瓷碗造型建筑,座落于江西景德镇,整体造型概念来自“宋代影青斗笠碗”,造型庄重典雅,象征“万瓷之母”.小敏为了计算该建筑物横断面(瓷碗橫断面ABCD为等腰梯形)的高度,如图2,她站在与瓷碗底部AB位于同一水平面的点P处测得瓷碗顶部点D的仰角为45°,而后沿着一段坡度为0.44(坡面与水平线夹角的正切值)的小坡PQ步行到点Q(此过程中AD,AP,PQ始终处于同一平面)后测得点D的仰角减少了5°.已知坡面PQ的水平距离为20米,小敏身高忽略不计,试计算该瓷碗建筑物的高度.(参考数据:sin 40°≈0.64,tan 40°≈0.84)

【答案】该瓷碗建筑物的高度约为50米.

【解析】

根据∠DPA=45°得到DH=PH,根据正切的定义求出PM,求出a;

分别过点D,P向水平线作垂线,与过点Q的水平线分别交于点N,M,DNPA交于点H,如解图所示,则四边形PMNH是矩形.

PM=HN,PH=MN.

由题意可知∠DPA=45°,DQN=45°-5°=40°.

RtDHP中,

∵∠DPA=45°,

DH=PH.

设该瓷碗建筑物的高度DHx,则PH=DH=MN=x.

RtPQM中,

tan PQM==0.44,QM=20,

PM=0.44QM=0.44×20=8.8,

DN=DH+HN=x+8.8,QN=QM+MN=x+20.

RtDQN中,tan DQN=

≈0.84,

解得x≈50.

答:该瓷碗建筑物的高度约为50米.

练习册系列答案
相关题目

违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com

精英家教网