题目内容
已知圆O的半径为5,AB是圆O的直径,D是AB延长线上一点,DC是圆O的切线,C是切点,连接AC,若∠CAB=30°,则BD的长为______.
连接OC,BC,
∵AB是圆O的直径,DC是圆O的切线,C是切点,
∴∠ACB=∠OCD=90°,
∵∠CAB=30°,
∴∠COD=2∠A=60°,CD=OC•tan∠COD=5
,
由切割线定理得,CD2=BD•AD=BD(BD+AB),
∴BD=5.
故答案为:5.
∵AB是圆O的直径,DC是圆O的切线,C是切点,
∴∠ACB=∠OCD=90°,
∵∠CAB=30°,
∴∠COD=2∠A=60°,CD=OC•tan∠COD=5
3 |
由切割线定理得,CD2=BD•AD=BD(BD+AB),
∴BD=5.
故答案为:5.
练习册系列答案
相关题目