题目内容

如图,已知CD为⊙O的直径,点A为DC延长线上一点,B为⊙O上一点,且∠ABC=∠D.
(1)求证:AB为⊙O的切线;
(2)若tanD=
1
2
,求sinA的值.
(1)证明:连结OB,如图,
∵CD为⊙O的直径,
∴∠BDC=90°,即∠OBD+∠OBC=90°
∵OB=OD,
∴∠D=∠OBD,
∵∠ABC=∠D,
∴∠ABC=∠OBD,
∴∠OBA=90°,
∴OB⊥AB,
∴AB为⊙O的切线;

(2)设BC=x,
在Rt△BCD中,tanD=
BC
BD
=
1
2

∴BD=2x,
∴CD=
BD2+BC2
=
5
x,
∴OB=OC=
5
2
x,
∵∠ABC=∠D,∠BAC=∠DAB,
∴△ABC△ADB,
AC
AB
=
BC
BD
=
1
2

∴AB=2AC,
在Rt△OAB中,∵OB2+AB2=AO2
∴(
5
2
x)2+(2AC)2=(
5
2
x+AC)2
∴AC=
5
3
x,
∴OA=
5
2
x+
5
3
x=
5
5
6
x,
∴sinA=
OB
OA
=
5
x
2
5
5
x
6
=
3
5
练习册系列答案
相关题目

违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com

精英家教网