题目内容
【题目】在Rt△ABC 中,∠C=90°,BC=3,AC=4.现在要将交ABC 扩充成等腰三角形,且扩充的部分是以AC为直角边的直角三角形,求扩充后等腰三角形的周长.
赵佳同学是这样操作的:如图 1 所示,延长BC 到点 D,使CD=BC,连接AD.所以,△ADB 为符合条件的三角形.则此时△ADB的周长为____________.
请你在图2、图3中再设计两种扩充方案,并直接写出扩充后等腰三角形的周长.
图2的周长:______________;图3的周长:______________.
【答案】 16 10+2
【解析】试题分析:利用勾股定理可求出AB的长进而得出△ADB的周长;再根据题目要求扩充成AC为直角边的直角三角形,利用AB=BD,AD=BD,分别得出答案.
试题解析:
∵在Rt△ABC中,∠C=90°,BC=3,AC=4,CD=BC,
∴AB=,则AD=AB=5,
故此时△ADB的周长为:5+5+6=16;
如图2所示:AD=BD时,设DC=x,则AD=x+3,
在Rt△ADC中,
(x+3)2=x2+42,
解得:x=,
故AD=3+= ,
则此时△ADB的周长为: ++5= ;
如图3所示:AB=BD时,在Rt△ADC中,
AD=,
则此时△ADB的周长为: +5+5=10+.
故答案为(1)16;(2)10+2, .
【题目】某运动队欲从甲、乙两名优秀选手中选一名参加全省射击比赛,该运动队预先对这两名选手进行了8次测试,测得的成绩如表:
次数 | 选手甲的成绩(环) | 选手乙的成绩(环) |
1 | 9.6 | 9.5 |
2 | 9.7 | 9.9 |
3 | 10.5 | 10.3 |
4 | 10.0 | 9.7 |
5 | 9.7 | 10.5 |
6 | 9.9 | 10.3 |
7 | 10.0 | 10.0 |
8 | 10.6 | 9.8 |
根据统计的测试成绩,请你运用所学过的统计知识作出判断,派哪一位选手参加比赛更好?为什么?