题目内容
【题目】综合与探究:
如图所示,在平面直角坐标系中,直线与反比例函数的图象交于,两点,过点作轴于点,过点作轴于点.
(1)求,的值及反比例函数的函数表达式;
(2)若点在线段上,且,请求出此时点的坐标;
(3)小颖在探索中发现:在轴正半轴上存在点,使得是以为顶角的等腰三角形.请你直接写出点的坐标.
【答案】(1),,;(2)点的坐标为;(3)
【解析】
(1)利用点在直线上,将点的坐标代入直线解析式中求解即可求出a,b,最后用待定系数法求出反比例函数解析式;
(2)设点,用三角形的面积公式得到求解即可得出结论;
(3)设出点M坐标,表示出MA2=(m-1)2+9,AB2=32,根据等腰三角形的性质建立方程求解即可得出结论.
解:(1)∵直线与反比例函数的图象交与,两点
∴,.
∴,.
∴,.
∵点在反比例函数上,
∴.
∴反比例函数的函数表达式为.
(2)设点,
∵,∴.
∴.
∵,∴.
∴,
∵
∴.
解得:,
∴.
∴点的坐标为.
(3)设出点M坐标为(m,0),
∴MA2=(m-1)2+9,AB2=(1+3)2+(3+1)2=32,
∵是以为顶角的等腰三角形
∴AM=AB,
故(m-1)2+9=32
解得m=或m=(舍去)
∴
练习册系列答案
相关题目