题目内容

【题目】在平面内,给定不在同一直线上的点ABC,如图所示.点O到点ABC的距离均等于aa为常数),到点O的距离等于a的所有点组成图形G的平分线交图形G于点D,连接ADCD

1)求证:AD=CD

2)过点DDEBA,垂足为E,作DFBC,垂足为F,延长DF交图形G于点M,连接CM.若AD=CM,求直线DE与图形G的公共点个数.

【答案】依题意画出图形G为⊙O,如图所示,见解析;(1)证明见解析;(2)直线DE与图形G的公共点个数为1.

【解析】

1)根据线段垂直平分线的性质得出图形G为⊙O,再根据在同圆或等圆中相等的圆周角所对的弧相等得出;从而得出弦相等即可.

2)先根据HL得出CDF≌△CMF,得出DF=MF,从而得出BC为弦DM的垂直平分线,根据圆心角和圆周角之间的关系定理得出∠ABC=COD,再证得

DE为⊙O的切线即可

如图所示,依题意画出图形G为⊙O,如图所示

1)证明:∵BD平分∠ABC,∴∠ABD=CBD

,∴AD=CD

2)解:∵AD=CDAD=CM,∴CD=CM.DFBC,∴∠DFC=CFM=90°

RtCDFRtCMF

,∴△CDF≌△CMFHL),∴DF=MF,∴BC为弦DM的垂直平分线

BC为⊙O的直径,连接OD

∵∠COD=2CBD,∠ABC=2CBD,∴∠ABC=COD,∴ODBE.

又∵DEBA,∴∠DEB=90°,∴∠ODE=90°,即ODDE,∴DE为⊙O的切线.

∴直线DE与图形G的公共点个数为1.

练习册系列答案
相关题目

违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com

精英家教网