题目内容
【题目】一组正方形按如图所示的方式放置,其中顶点B1在y轴上,顶点C1,E1,E2,C2,E3,E4,C3……在x轴上,已知正方形A1B1C1D1的顶点C1的坐标是(﹣,0),∠B1C1O=60°,B1C1∥B2C2∥B3C3……则正方形A2018B2018C2018D2018的顶点D2018纵坐标是_____.
【答案】×()2017
【解析】
利用正方形的性质结合锐角三角函数关系得出正方形的边长,进而得出变化规律即可得出答案.
∵∠B1C1O=60°,C1O=,
∴B1C1=1,∠D1C1E1=30°,
∵sin∠D1C1E1=,
∴D1E1=,
∵B1C1∥B2C2∥B3C3∥…
∴60°=∠B1C1O=∠B2C2O=∠B3C3O=…
∴B2C2=,B3C3=.
故正方形AnBnCnDn的边长=()n-1.
∴B2018C2018=()2017.
∴D2018E2018=×()2017,
∴D的纵坐标为×()2017,
故答案为×()2017.
【题目】某市为了解九年级学生数学模拟考试成绩情况,随机抽取部分学生的成绩进行分析,制成频数分布表如下(成绩得分均为整数):
组别 | 成绩分组 | 频数 | 频率 |
1 | 47.5~59.5 | 2 | 0.05 |
2 | 59.5~71.5 | 4 | 0.10 |
3 | 71.5~83.5 | a | 0.2 |
4 | 83.5~95.5 | 10 | 0.25 |
5 | 95.5~107.5 | b | c |
6 | 107.5~120 | 6 | 0.15 |
合计 | d | 1.00 |
根据表中提供的信息解答下列问题:
(1)频数分布表中的a= ,b= ,c= ,d= ;
(2)补充完整频数分布直方图.
(3)已知全市九年级共有3500名学生参加考试,成绩96分及以上为优秀,估计全市九年级学生数学模拟考试成绩为优秀的学生人数是多少?
【题目】“古圣先贤孝为宗,万善之门孝为基,礼敬尊亲如活佛,成就生命大意义,父母恩德重如山,知恩报恩不忘本,做人饮水要思源,才不愧对父母恩…”.某实验中学为加强对学生的感恩教育,教学生唱《跪羊图》,并对学生的学习成果进行随机抽查,现对部分学生的成绩(x为整数,满分100分)进行了统计,绘制了如下尚不完整的统计图表.
组别 | 成绩分组 (单位:分) | 频数 | 频率 |
A | 40 | 0.1 | |
B | 60 | c | |
C | a | 0.2 | |
D | 160 | 0.4 | |
E | 60 | 0.15 | |
合计 | b | 1 |
调查结果扇形统计图
根据以上信息解答下列问题:/p>
(1)统计表中________, ________,________;
(2)求扇形统计图中D组所在扇形的圆心角的度数;
(3)若参加《跪羊图》演唱的同学共有2000人,请估计成绩在90分及以上的学生有多少人?