题目内容
【题目】为了发展学生的核心素养,培养学生的综合能力,某中学利用“阳光大课间”,组织学生积极参加丰富多彩的课外活动,学校成立了舞蹈队、足球队、篮球队、毽子队、射击队等,其中射击队在某次训练中,甲、乙两名队员各射击10发子弹,成绩记录如表:
射击次序(次) | 1 | 2 | 3 | 4 | 5 | 6 | 7 | 8 | 9 | 10 |
甲的成绩(环) | 8 | 9 | 7 | 9 | 8 | 6 | 7 | a | 10 | 8 |
乙的成绩(环) | 6 | 7 | 9 | 7 | 9 | 10 | 8 | 7 | 7 | 10 |
(1)经计算甲和乙的平均成绩是8(环),请求出表中的a= ;
(2)甲成绩的中位数是 环,乙成绩的众数是 环;
(3)若甲成绩的方差是1.2,请求出乙成绩的方差,判断甲、乙两人谁的成绩更为稳定?
【答案】(1)8;(2)8;7;(3)甲的成绩更为稳定.
【解析】
(1)依据甲的平均成绩是8(环),即可得到a的值;
(2)依据中位数以及众数的定义进行判断即可;
(3)依据方差的计算公式,即可得到乙成绩的方差,根据方差的大小,进而得出甲、乙两人谁的成绩更为稳定.
解:(1)∵甲的平均成绩是8(环),
∴(8+9+7+9+8+6+7+a+10+8)=8,
解得a=8,
故答案为8;
(2)甲成绩排序后最中间的两个数据为8和8,
∴甲成绩的中位数是(8+8)=8;
乙成绩中出现次数最多的为7,故乙成绩的众数是7,
故答案为8,7;
(3)乙成绩的方差为[(﹣1)2×4+12×2+22×2+(﹣2)2+02]=1.8,
∵甲和乙的平均成绩是8(环),而甲成绩的方差小于乙成绩的方差,
∴甲的成绩更为稳定.
练习册系列答案
相关题目