题目内容

【题目】如图,ABC是等边三角形,CE是外角平分线,点D在AC上,连结BD并延长与CE交于点E.

(1)求证:ABD∽△CED.

(2)若AB=6,AD=2CD,求BE的长.

【答案】

(1)略

(2)

【解析】(1)证明: ABC是等边三角形,

 BAC=ACB=60°.ACF=120°.

 CE是外角平分线,  ACE=60°.

 BAC=ACE.     ……(2分)

 ADB=CDE,

 ABD∽△CED.     ……(4分)

(2)解:作BMAC于点M,AC=AB=6.

 AM=CM=3,BM=AB·sin60°

 AD=2CD, CD=2,AD=4,MD=1.        ……(6分)

在RtBDM中,BD=.       ……(7分)

由(1)ABD∽△CED得,

 ED= BE=BD+ED=.          ……(8分)

练习册系列答案
相关题目

违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com

精英家教网