题目内容
【题目】如图1,在中,是的直径,交于点,过点的直线交于点,交的延长线于点.
(1)求证:是的切线;
(2)若,试求的长;
(3)如图2,点是弧的中点,连结,交于点,若,求的值.
【答案】(1)证明见解析(2)(3)
【解析】
(1)连接半径,根据已知条件结合圆的基本性质可推出,即,即可得证结论;
(2)设,根据已知条件列出关于的方程、解方程即可得到圆心角,再求得半径,然后利用弧长公式即可得解;
(3)由,设,然后根据已知条件利用圆的一些性质、勾股定理以及三角形的不同求法分别表示出、,再利用平行线的判定以及相似三角形的判定和性质即可求得结论.
解:(1) 连结,如图:
∵是的直径
∴
∴
∵
∴
∵
∴
∴
∵在圆上
∴是的切线.
(2)设
∵
∴
∴
∵在中,
∴
∴
∴
∵
∴
∴
连结,过作于点,如图:
∵点是的中点
∴
∴设
∴
∴
∴
∵在中,
∴
∵,
∴
∴
∴.
故答案是:(1)证明见解析(2)(3)
练习册系列答案
相关题目
【题目】某品牌手机销售公司有营销员14人,销售部为制定营销人员月销售手机定额,统计了这14人某月的销售量如下(单位:台):
销售量 | 200 | 170 | 165 | 80 | 50 | 40 |
人 数 | 1 | 1 | 2 | 5 | 3 | 2 |
(1)求这14位营销员该月销售该品牌手机的平均数、中位数和众数.
(2)销售部经理把每位营销员月销售量定为100台,你认为是否合理?为什么?