题目内容

【题目】如图,P为平行四边形ABCD的边AD上的一点,E,F分别为PB,PC的中点,△PEF,△PDC,△PAB的面积分别为S,S1 , S2 . 若S=3,则S1+S2的值为(
A.24
B.12
C.6
D.3

【答案】B
【解析】解:过P作PQ∥DC交BC于点Q,
由DC∥AB,得到PQ∥AB,
∴四边形PQCD与四边形APQB都为平行四边形,
∴△PDC≌△CQP,△ABP≌△QPB,
∴SPDC=SCQP , SABP=SQPB
∵EF为△PCB的中位线,
∴EF∥BC,EF= BC,
∴△PEF∽△PBC,且相似比为1:2,
∴SPEF:SPBC=1:4,SPEF=3,
∴SPBC=SCQP+SQPB=SPDC+SABP=S1+S2=12.
故选:B.
【考点精析】本题主要考查了三角形中位线定理和平行四边形的性质的相关知识点,需要掌握连接三角形两边中点的线段叫做三角形的中位线;三角形中位线定理:三角形的中位线平行于三角形的第三边,且等于第三边的一半;平行四边形的对边相等且平行;平行四边形的对角相等,邻角互补;平行四边形的对角线互相平分才能正确解答此题.

练习册系列答案
相关题目

违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com

精英家教网