题目内容
【题目】如图,在△ABC中,AB=AC,AB的垂直平分线分别交AB,AC于点D,E.
(1)若∠A=40°,求∠EBC的度数;
(2)若AD=5,△EBC的周长为16,求△ABC的周长.
【答案】(1)∠EBC=30°;(2)△ABC的周长= 26.
【解析】
(1)根据等腰三角形的性质和三角形内角和定理求出∠ABC的度数,根据线段的垂直平分线的性质求出∠EBA的度数,计算即可;
(2)根据线段的垂直平分线的性质和三角形的周长公式求出AC+BC+AB=16+5+5=26,计算即可.
(1)∵AB=AC,∠A=40°,∴∠ABC=∠C=70°.
∵DE是AB的垂直平分线,∴EA=EB,∴∠EBA=∠A=40°,∴∠EBC=30°;
(2)∵DE是AB的垂直平分线,∴DA=BD=5,EB=AE,△EBC的周长=EB+BC+EC=EA+BC+EC=AC+BC=16,则△ABC的周长=AB+BC+AC=26.
![](http://thumb.zyjl.cn/images/loading.gif)
练习册系列答案
相关题目