题目内容

(本题6分)已知:如图,△ABC是等边三角形,DAB边上的点,将DB绕点D顺时针旋转60°得到线段DE,延长EDAC于点F,连结DCAE

小题1:(1)求证:△ADE≌△DFC
小题2:(2)过点EEHDCDB于点G,交BC于点H,连结AH.求∠AHE的度数;
小题3:(3)若BG=CH=2,求BC的长.

小题1:(1)证明:如图,
∵线段DB顺时针旋转60°得线段DE
∴∠EDB =60°,DE=DB.
∵△ABC是等边三角形,
∴∠B=∠ACB =60°.
∴∠EDB =∠B.
EFBC.····································· 1分
DB=FC,∠ADF=∠AFD =60°.
DE=DB=FC,∠ADE=∠DFC =120°,△ADF是等边三角形.
AD=DF.
∴△ADE≌△DFC.
小题2:(2)由△ADE≌△DFC
AE=DC,∠1=∠2.
EDBC EHDC
∴四边形EHCD是平行四边形.
EH=DC,∠3=∠4.
AE=EH. ················································································· 3分
∴∠AEH=∠1+∠3=∠2+∠4 =ACB=60°.
∴△AEH是等边三角形.
∴∠AHE=60°.
小题3:(3)设BH=x,则AC= BC =BHHC= x+2,
由(2)四边形EHCD是平行四边形,
ED=HC.
DE=DB=HC=FC=2.
EHDC
∴△BGH∽△BDC.······································································· 5分
.即.
解得.
BC=3.
练习册系列答案
相关题目

违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com

精英家教网