题目内容
【题目】如图,△ABC内接于⊙O,AC=BC,CD是⊙O的直径,与AB相交于点G,过点D作EF∥AB,分别交CA、CB的延长线于点E、F,连接BD.
(1)求证:EF是⊙O的切线;
(2)求证:BD2=ACBF.
【答案】(1)见解析;(2)见解析.
【解析】
(1)根据圆的对称性可得∠ACD=∠BCD,根据等腰三角形的性质可得CD⊥AB,由EF//AB可得∠CDF=∠CGB=90°,即可得答案;(2)先证明△BCD∽△BDF,利用相似三角形的性质可知:,利用BC=AC即可求证BD2=ACBF.
(1)∵AC=BC,CD是圆的直径,
∴由圆的对称性可知:∠ACD=∠BCD,
∴CD⊥AB,
∵AB∥EF,
∴∠CDF=∠CGB=90°,
∵OD是圆的半径,
∴EF是⊙O的切线;
(2)∵∠BDF+∠CDB=∠CDB+∠C=90°,
∴∠BDF=∠CDB,
∴△BCD∽△BDF,
∴,
∴BD2=BCBD,
∵BC=AC,
∴BD2=ACBF.
练习册系列答案
相关题目