题目内容
【题目】如图,矩形ABCD中,AB=6,AD=8,P,E分别是线段AC、BC上的点,且四边形PEFD为矩形.
(1)若△PCD是等腰三角形时,求AP的长;
(2)若AP=,求CF的长.
【答案】(1)4;5; (2)
【解析】试题分析:(1)先求出AC,再分三种情况讨论计算即可得出结论;
(2)先判断出OC=ED,OC=PF,进而得出OC=OP=OF,即可得出∠OCF=∠OFC,∠OCP=∠OPC,最后判断出△ADP∽△CDF,得出比例式即可得出结论.
试题解析:(1)在矩形ABCD中,AB=6,AD=8,∠ADC=90°,∴DC=AB=6,
∴AC==10,
要使△PCD是等腰三角形,分三种情况讨论:
①当CP=CD时,AP=AC﹣CP=10﹣6=4;
②当PD=PC时,∠PDC=∠PCD,∵∠PCD+∠PAD=∠PDC+∠PDA=90°,∴∠PAD=∠PDA,∴PD=PA,∴PA=PC,∴AP=AC=5;
③当DP=DC时,如图1,过点D作DQ⊥AC于Q,则PQ=CQ,∵S△ADC=ADDC=ACDQ,∴DQ= =,∴CQ= =,∴PC=2CQ=,∴AP=AC﹣PC=10﹣=,
所以,若△PCD是等腰三角形时,AP=4或5或;
(2)如图2,连接PF,DE记PF与DE的交点为O,连接OC,
∵四边形ABCD和PEFD是矩形,∴∠ADC=∠PDF=90°,
∴∠ADP+∠PDC=∠PDC+∠CDF,∴∠ADP=∠CDF,
∠BCD=90°,OE=OD,∴OC=ED,
在矩形PEFD中,PF=DE,∴OC=PF,
∵OP=OF=PF,∴OC=OP=OF,∴∠OCF=∠OFC,∠OCP=∠OPC,
∵∠OPC+∠OFC+∠PCF=180°,∴2∠OCP+2∠OCF=180°,∴∠PCF=90°,
∴∠PCD+∠FCD=90°,
在Rt△ADC中,∠PCD+∠PAD=90°,∴∠PAD=∠FCD,
∴△ADP∽△CDF,∴=,∵AP=,∴CF=.